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Abstract The asymptotics of the wave field scattered by a right-angled impedance wedge is considered. The
exact complex Sommerfeld-type integral solution for the problem of the diffraction of a plane wave by a right-
angled impedance wedge is transformed into a new representation. This new representation is in a form suitable
for the asymptotic behaviour to be derived across the specular and shadow boundaries where the usual diffraction
coefficient becomes infinite.
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1 Introduction

In dealing with mobile-phone propagation in cities the effect of building corners and their surface cladding is
of paramount importance for the signal strength of the phones. One of these ubiquitous corners can be effec-
tively modelled for high-frequency propagation by a right-angled impedance wedge in two dimensions. To obtain
qualitative results for the signal strength when there are multiple diffractions from a number of such corners
an effective approach is to use the Keller method of geometrical diffraction. This method requires information
about the “diffraction coefficient” which are obtained from the solution of canonical wedge problems. These
coefficients need to be uniformly valid in the angular variables in order that the method can be used success-
fully when considering multiple diffractions at different corners. This work goes some way to addresses this
problem.

The first exact solution to the problem of the diffraction of a plane wave by an arbitrarily angled impedance
wedge was obtained in terms of complex Sommerfeld integrals by Malyuzhinets [1] and later independently
by Williams [2]. The Sommerfeld integral representation of the field required the solution of complicated dif-
ference equations. The two different approaches of Malyuzhinets and Williams revolved about the method of
solution of the difference equations. Malyuzhinets introduced a new transcendental function defined by a spe-
cific difference equation; Williams used the extant results on the Double Gamma function worked out, in his
youth, by the later to be Anglican Bishop of Birmingham, E W Barnes. These research works were a tribute
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356 A.D. Rawlins

to the ingenuity of these mathematicians. A later paper by Lebedev and Skal’skaya [3] used the Kontorovich—
Lebedev transform to derive another equivalent solution. This also involved solving different, but complicated
difference equations. A much simpler method to obtain the exact solution to the specific problem of the
diffraction of a plane wave by a right-angled impedance wedge was later obtained by Rawlins [4]. This method
avoided solving the complicated difference equations that arise in the previous methods. We shall use this later
result to obtain useful asymptotic results for the field across singular ray directions where the usual diffraction
coefficient, used in high-frequency methods like Kellers’s theory of geometric diffraction, break down. This is
because poles and saddle points of the Sommerfeld integrand coalesce. Here, to be specific, we shall consider an
electromagnetic E-polarized plane wave that propagates towards and is diffracted by an impedance wedge. We
should remark that heuristic diffraction coefficients for arbitrarily angled impedance wedges have been consid-
ered by various authors; see references in [5]. These authors use non-rigorous but physically plausible approx-
imations. However, they suffer from non-uniformity in the angular variable. The uniform asymptotic far-field,
for the perfectly conducting situation, has been carried by using the Kontorovich-Lebedev transform by Jones
[6, pp. 608-612].

In Sect.2 we shall give the mathematical problem that we intend to solve and the complex Sommerfeld integral
solution. In Sect.3 we shall use straightforward asymptotics to give some properties of the diffraction coefficient
used to calculate the far-field. This diffraction coefficient becomes infinite for particular far-field angular directions.
In Sect.4 we represent the Sommerfeld integral in terms of two new canonical integral representations, 7 (§), J(8),
that can be asymptotically evaluated for all angular values. In the remaining parts of the paper we derive uniform
asymptotic expressions for these canonical integrals and hence expressions for the far field which is uniformly valid
for all angular values.

2 Formulation of the boundary-value problem

The right-angled wedge is assumed to be defined by the surfaces y = 0,x > 0O and x = 0,y < 0; and polar
coordinates (r, #) are defined by x = rcosf,y = rsin6. The case when the only component of the incident
electric field is that parallel to the z-axis will be considered. We shall assume that the incident field is given by
ug = e 1@IHkrcos@=0)1 0 < g, < 37/2. If ue ! denotes the total electric intensity parallel to the z-axis, then
Maxwell’s equation give,

5 3
(A+k)u=0, 0<9<7, (1)
where
2 3
A= —+ —,
dy? + dx2

and where k> = €pow?. For a unique solution the total field u must satisfy an edge condition, and the edge-diffracted
field u4 a radiation condition. The boundary conditions appropriate to the present problem are given by

du(x,0)

% —ikcosdu(x,0) =0, (x> 0), )
y

ou(0, .

% tikcosdu(0,y) =0, (v <0). 3)
X

The complex angle ¥ represents the impedance properties of the wedge surfaces. For absorbing surfaces it is nec-
essary that m < PRer < 37 /2. A special case of this diffraction problem has been dealt within [4] and from this
work a convenient expression for the diffracted far field is given by:
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(COS @ Ccos M)

.0 / sin 2% gin 22 2y elkr cos(y —6)
uqlr, =
V3mi(cos By 4 cos 9)(sinfy — cos ) Js) (cos M + %) (cos m + %)

(cosy —cos ) (siny + cos ¥)(2 cos 220 cos 2 + 2 — cos @)dy

(cos —4(”_;_29) + i) (cos —4(”+§T+ﬁ) + 5)

where the path of integration S(6) is the path of steepest descent through 6. A straightforward application of the
method of steepest descent applied to the above integral gives, assuming that no poles of the integrand occur near
the saddle point y = 6,

X

, “

ikr
\/_

where the “diffraction coefficient” D(0, 8y) is given by

q(r, 0,60) = D(©,60)—= + O((kr) ), ®)

el (cos@ — cos ) (sinf + cos 1)) (cos % — cos @)
D, 60) =

61k (cos By + cos ) (sin By — cos V) (cos M + %)

200 4(+9) 20 26
(ZCos =* cos 3 —|—2 cos ——5— )

sin 5 sin =
X .
4O+ +10) 1 2(60—6p) 1 2(0+60) 1
(cos —s — + 5) (cos =+ 7) (cos =+ 5)

The results above can become infinite for certain combinations of the angular variables 6, 6y. To overcome this
drawback, we need to apply a more sophisticated asymptotic analysis to the integral (4). Before we can do this we
need to represent this Sommerfeld integral in terms of two new integrals.

(6)

3 Alternative integral representations for the integral (4)

Rewrite the integral (4) in a more convenient form

1 1 1 .
ug(r,0) = — D(y, 6y) elkreosty=0)q,,, (7
2713 Jso) cos 2;’ — cos w cos 2; — cos w
where
(cosy —cos ) (siny + cos )
D(y, 6p) =

(cos By + cos 1) (sin By — cos V)

46 4(r+9) 26p 2y 1 4(+9)
(cos 0 — cos #5520) (2005 %0 cos F 4§ — cos 12 ®)
X .
4(y—m—10) 1 4(y+m+9) 1
(cos A==t 5) (cos Uyttt z)

The reason for writing u,4(r, 0) in this form is that complex poles involving ¥ only appear in D(y, 6p). These
poles never occur in the range of y for which we shall be concerned with provided Se(+/1 — cos? #) > 1. The
physical reason for this is that no surface waves are excited or supported on the wedge faces under the present
conditions; see [7,8]. For certain values of 6 and 6, the poles of the integrand in (7) approach near to, and can
exist at, the saddle point. In such a situation the normal saddle-point method breaks down, and the expression (6)
obtained for the diffraction coefficient is no longer valid. The situation described above corresponds to the physical
situation when the field is observed near to the geometrical-optics boundaries. We shall now use the method of
[9] to derive expressions for the diffracted field which are uniformly valid near the geometrical-optics boundaries.
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Before applying the method of Oberhettinger, the diffracted-field integral representation (7) must be represented in
terms of Laplace-type integrals. Letting 6 4+ iw = y in (7) gives

1 1

1 o0 _ .
ug(r,0) = —— / D@ +iw, 6p) _ _ i eikr coshw g,
273/3 J o0 cos 2T” — cos —2(9+1§”_90) cos %” — cos —2(9+13w+90)

©)
The two integrals in the expression (9) are of the general form
S ) () iw, O ikrcoshwd
Prnoy = [~ PO (10)
273 /00 (cos Z — cos —z(wilw))

where ¢ = 6 £ 6p. Some manipulation (see appendix) enables one to rewrite (10) in the form

* D, (0, 6, w)elkrcoshwdw
P(r0) = —siny (n w)
cosh 2—w — cos 27— lﬂ))
1 o De(e 6o, w)elkrcoshwdw
sin — (n + w)
o cosh 2 — cos _2(”3“#))
i /’OO DO(Q, 90, u_)) Slnh Z_w ikr cosh wdw
6 Jo (coshsz — cos 2= w>)
i [ D,(8, 6, w)sinh 2w gikreoshw gy, .
6 Jo (cosh 2 — cos _2(”?0))
where
D, (0, 60, w) = DO +iw, 6o) + D(® — iw, fo), (12)
D, (0, 6o, w) = DO +iw, bp) — DO — iw, bp).
Thus the field u4(r, 6) can now be written in the form
uq(r,0) = — {1t — 0+ 00) +J (r — 0+ 60)}
+{I(w -0 —060)+ J(w—0 —6p)}
+{I(w+6+6y) —J(0r+6+6p)}, .
where
Sln— * D, (0, 69, w)elkrcosh wdw
" ’ 14
( ) / COSh 2w — cos 235) ( )
i < D, (0, 6, w) sinh 2_w ikr coshw g,
J() = / s - .
6 (cosh 2 — cos )

1(8) = —=1(=8), J(§) = J(=9), (16)
16 +3mn)=1(), JG+3mm)=J@),|n=0,1,2,...

To evaluate (14) and (15) asymptotically for large kr it is necessary to expand the numerator, excluding the expo-
nential, in terms of sinh 3. This is achieved by means of Biirmann’s theorem [10, pp. 128-133] which gives

D@ +iw, 6p) = > B,(6, ) (sinh %) , (17)

n=0
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aD(®, 6o)

where By (0, 6y) = D(6, 6y), B1(0, 6y) = 2iD1(8, 6y); D1(0, 6y) = T The remaining coefficients are
given by

1 d*!' [dD@ +iw,6 "
B(©.60) = ~ & [ROEIw ) ([ w Con=23,..

n! dwn—1 dw sinh % 0

It is clear that B, is a function of 6, 6y but we shall drop the explicit representation of this dependence in the
rest of the paper. From the relationship between D(0 — iw, 6y), D, (8, 6y, w) and D, (6, 8y, w) with the expansion
[11, p. 101].

1 1 3
sinh vw = 2v sinh E2F1 v+ =, — —v; —; — sinh? v ,
2 22 2 2
we obtain
> . w\ 2n
D. (6. 60, w) =2 By, (smh 3) , (18)
n=0
e 2n+1
D, (0, 60, w) =2 By (sinh 5) (19)
2
n=0
Letting
2
i sinh Twna(e, 6o, w) = 4 sinh? %D;(G, b0, w) (20)
where
/ - / . w 2”
Do(9790» w) = ZBZVL (Slnh 3) ’ (21)
n=0
gives a relationship between the coefficients Bén and By, 41, forn =0, 1, 2, .. .; the first few of which are given
by:
B’—ziB B/—ZiB +7iB B,_ZiB +7iB 9liB
0= 3P 2T g g P BT IS T T T ge

The above expansions are valid in the region |sinh 5| < 1, and, since the saddle point of the integrals (14) and
(15) occur at w = 0, the integrands are in a suitable form for the standard asymptotic evaluation of the integrals.
We exclude the situation where SRe?? &~ 37 /2 and Jm* ~ 0 since the non-captured poles of D(0 + iw, 6p) will
approach the saddle-point and the modified saddle-point method will also have to be applied in this case. Since
these poles do not exist when ¥ = 37/2, we shall not carry out this special situation here.

4 Uniform asymptotic expansion for I(J)

We shall now obtain the asymptotic expansion for the integral (14) for arbitrary § and kr large. Letcoshw = 1+1¢
in (14) so that

ikr 7 ikre A1
1(8) =¢€ 0 K(I)C E, (22)
where
1
28 (t+2)"2 D, (0, 0y, cosh~ 1 (1 + ¢
K(t)=sin?-( D7 e(©, b, cosh™ (1 +1)) 23)

37 [COSh%IH(l +t+(t2+2t)%)—cos(@)]’
and from (18)

@ Springer



360 A. D. Rawlins

oo n
t
D, (0, 6o, cosh™' (1 +1) =2>" By, (-) . (24)
2
n=0
The expression (23) can be expanded in an infinite power series in #, about the origin, and the function to which the
series converges uniformly, will be analytic in the region |¢f| < |fo|, where 7 (: —2sin? %) is the nearest pole to
the origin. Thus

o0
K(t) =" cat", It| < ltol,
n=0
25
D@, 6p) 8 1[d" (25)
co = cot—, ¢, =—|—K(@) , n=1,2,....
37'[ﬁ 3 n! | dt” =0

To obtain a uniform asymptotic expansion for 7 (§), which is valid for § — 0, it is necessary to remove the pole
t = to from the expression for K (¢). Thus we define K*(¢) by

b_y
K*(t) = K(1) — , (26)
(t —10)
where K*(¢) is analytic at t = #(, and from (23)
. 1 .20
b1 = tll)nt})(t —10)K(@) = EDe (0, 6y, —2 sin 5) 27

From (26) it can be seen that K*(¢) has a larger radius of analyticity than K (). This is because we have removed
from K (¢) the singularity, #(, nearest to the origin. Denoting by #; the singularity of K*(¢) nearest to the origin, one
has |tg| < |t1]; and thus we can expand K *(¢) about the origin, the expansion being analytic for |¢| < |¢1]. Thus

o
K*(@t) =D dut".  |t] < Inl,
n=0

LT (28)
dy=—|—K*"@) , n=0,1,2,....
n! | dt"? /=0
Hence substituting K () given by (26) in (22) we obtain
. S dr . o0 . dr
I (8) — elk}’b_] / elkr[ T elk}’ / K*(t)elkrl - (29)
0 Vit = 10) 0 Vi
By considering the integral
eizdZ
JVz(z+a)
over a quarter circle of infinite radius indented at the origin in the first quadrant, we may show that for z = x 4 iy
oo ixd . oo -vd x ia
= i — 2D 2 S F(Va),
0 Vx(x+a) 0 YO —ia) Va

where |arga| < m, and F(v) is the Fresnel integral

o0 .9
F(v) =/ e du.
v

Thus, the first integral of the expression (29) can be evaluated by using the result:

00 eia)cdx T )
_ o [T ei@rn/d g Jap), 30
o x(x+b) be (vab) (30)
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which is valid for |arg b| < m, a > 0. The second integral of the expression (29) can be evaluated by a straightfor-
ward application of Watson’s Lemma; and noting that

PR N I N b
=alao] = alw (o -e55) L
i boi(~1)"
- [dt” ()]t=0 o (—to)rt1”°
(—1)"27"71D, (6, 6, —2sin 3)

=6 = 1 ’ G

27 (sin )
)

we obtain
1 S\ . .
1(8) = —=D, (6, 6, —25sin? - ) el*kreosd=send) g ((/pfr
VT 2

eitkr+3) 0 (—1)"27""1D, (6,60, —2sin? §) | i"I" (n + 3)
i =T 27 (sin §)*"*! (er)"

which is the uniform asymptotic series for 7 (§).

sin —

+

(32)

5 Uniform asymptotic expansion for J(3)

Making the change of variable cosh w = 1 + ¢ in the integral representation (15) gives
J(8) = elkr /0 Y M@, (33)
where

(t +2)"2D.,(9, 6y, cosh~' (1 + 1))
37 [cosh 3In(1 41 + (2 4+ 20)%) — cos (%) |
and from (21)

M(t) =

(34)

o0 n
_ t
D/ (8, 69, cosh 1(1+t))=ZBén (5) .
n=0

The expression (34) can be expanded in an infinite power series of ¢, (about the origin), which will be analytic in
the region |t| < |fg|, where #y ( —2sin 2) is the nearest pole to the origin. Thus

o0
M) = e, il < o,
n=0
—2D(8, 0 1 [ad"
s o LEE | P 170) IRV E 3
97+/2 (sin %) dr =0

To obtain a uniformly valid asymptotic expansion for J(§) it is necessary to isolate the pole 7y by defining a new
function M*(t) by
/

b
M) = M*(t) + —— 7 _t) (36)

where
/ = 28 i 8
D, (9, 6y, —2 sin §) sin 5
V2r sinzg

b’y = lim (t — fo)M(t) = 37
t—1
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Thus (15) can be written in the form

: e oo de
J(5) _ elkrb/ / \/’elkrt elkr/ M*([)elkrt—, (38)
(t — to) 0 Vit
where,
o
M*(1) = Zd;,r", It < |11,
1[d"
d =— t , =0,1,2,.... 39
" |:dtn ( )]z=0 ! (39)
The first integral in the expression (38) can be evaluated by noting that
1 . .
o 2 1ax o0 Llax o 1ax
/ Rl dx:/ e,dx—b/ S (40)
o (x—+Db) 0 x2 0 x2(x+b)
and using the result (30) we obtain
1 .
o0 b3 lax o . s
/ X gx = ﬁeu — 2Jmbe 1% F(Jab). (41)
o (x+Db) a

The second integral of the expression (38) is evaluated by a straightforward application of Watson’s Lemma. Thus

D, (6,60, —2sin?$)sind 2D (6,6, —2sin> ) (sin 3)” sgns 5
o (0. % 25) z_ o (0% 2)8( 3) s F(\/m sin—')
V2mkr sin % 7 sin 2 2
; b . 19.
e+ o (CD'D; (6,60, -2 sin? $) 2772 | i'T (n + 3)
*r? = 2 (sin )™ sin 2 (kry
Having determined the uniform asymptotic expansions for  (§) and J(§), we shall now determine the expressions
for particular values of §.

J(6) =

(42)

6 4 not near zero

In this situation the arguments of the Fresnel integrals are large and we can use the asymptotic expansion for these
integrals, viz.

ix2 jim/2
F(lx]) S E 1F(+1 (D", x| 43)
x|) =~ = n+—-J)(-1)", |x|— oo.

2ﬁ|x|nzox” 2

Thus the expression (32) becomes after using (43)
1(kr+7r/4) S

n

3)i _ D(9s90)ei(kr+n/4)

1O~ =7z Z (kr)" 33k
Rewriting (43) as
ix2 Jim/2 ix2 Jim/2
F(lx]) ~ Z¢;|x| - 23;16'3/2 ;x%r (n + %) (=), |x] = oo. (45)
and substituting this expression in (42) yields
elkr+31/4) 22 ¢/ T (n + %) in
(kr)3/2 o (kr)n

cot 3t O((kr)~3/?). (44)

J(6) ~

=0+ O((kr)™/%). (46)

Substituting the expression (44) and (46) in the expression (13) gives the expression (5), where D (6, 6p) is given
by (6), in accordance with expectation.
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7 & near zero

For small § the arguments of the Fresnel integrals are also small, and a suitable asymptotic expansion for F'(|x|)
must be found. For x| — 0,

0o 0o x| - Il
F(|x|):/ e”zdt:/ e”zdt—/ el dr = “/T;elz — [ e’ar (47)
\ 0 0

x| 0

. . 2. .

For |x| << 1, the series expansion for e'’” is uniformly convergent for all # << |x|, and we may therefore integrate
. . iy

term by term the series expansion for e!’” in (47). Thus

2)n

F(|x|>——e4 —Ix |Z ,((;;H) x| = o. (48)

By means of the following formulae

28 3 ) 21 ) ( 8)
csc———csc—+—sm—+0 sin” = |,

3 4 216 2 2
) 2 5,86 16 49 60
cos— =1—=sin’> = — — sin* = + O ( sin® = ,
3 9 2 243 2 2
sin b + 10 1n38 + 154 sin48 + 0 s'n68
__Z 4 T e in® =),
3 3 2 162 2 5832 2 2
1) 3 8 15 . 6§ 543 36 .58
CSC—=—-¢CC— — —Sin—— ——sin" =+ 0 |sin” - |,
3 2 2 108 2 11664 2 2
) 3 ) 51 ) 1335 . 36 59
Cot— = —cCcSsC— — — sin — — sin” = 4+ O | sin” = ),
3 2 2 108 2 11664 2 2

which are obtained from [11, p. 101],

1 1 3
sinvz = 2v sin E2F1 (5 +v, = —v; = sin? E) ,

2 2 2’ 2
1
cosvz = 2o F) (v, —v; 5; sin? %) ,

and the expression (48), we may expand (32) and (42) in terms of sin % The manipulations have to be carried out
with care, and this is a rather tedious task. The parts which would be singular if § = 0 cancel each other out and we

finally obtain
1(8) = sgndD (O, Hp)e'®" /4

8 3

’ ) L

X [?ei”/“ — /2kr

ei(kr+7'r/4)
+—
2/ 2mwkr (

ei (kr+3m/4)

n (B U+ I 9)) ind 1o Sm% +0( 5) (49)
— By — —By+ —D(@, 0y ) sin = sin” —
8v/2 (kr)? 5477 54 2 (kr)2 2
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Similarly
3B/ei(kr+7f/4) 3B/ S .
J(§) = =2 — sgnd 0 gin —e!kr=m/4)
4/ 2mkr 2w 2

X [gei”/“ — /2kr

8 i
in=| — = (V2k
smz‘ 3( r

3)3_..}

sin —
+ei(kr_n/4) (33/ 7 B’) +0 sin 3 + 0( in’ 8) (50)
— B, — — sin” — ).
22mkr \8 2 14470 (kr)3 2

8 § = ¥ + &’ where &’ is small and ¥ is a fixed angle

The arguments of the Fresnel integrals will be large and we can therefore substitute (43) in (42) and (46) and setting
8 = ¥ + &' we obtain after some manipulations of the resulting expressions

D@, 0kt Y 2D(B, 6p)e® T/ in &
I(y£6) = cotgq: ER
3V 2mkr 9v/2m (kr)2 sin” 5

iD(o, 90)ei(kr+”/4) 8 W
— 3 I+ — 55 Jeot =
24y/27 (kr)? 9sin® 3 3

LBt b o Sk (51)
—— cot — .
12427 (kr)s 3 (kr)3
B/ eitkr—m/4) 2 sin &
JEy=-——C (csc f) +ol—2). (52)
1227 (kr)? 3 (kr)?

9 Conclusions

We have derived some new results for the uniform asymptotic expansions for the electromagnetic field produced
when an E-polarized plane wave is diffracted by a right-angled impedance wedge. These results are of use in
applying the Keller method of geometrical diffraction theory to problems which involve diffraction by right-angled
corners, for instance the problem of the high-frequency diffraction by a rectangular cylinder (a model for a sky-
scraper) has been successfully solved by using these results. The methods used here for the same polarization can
also be used mutatis mutandis for an arbitrarily angled imperfectly conducting wedge. The analogous problem to
that considered here for H-polarization can also be solved using the method outlined above. However, the presence
of surface waves would have to be taken into account for practical purposes. This would require the integrand to be
expanded out in a similar manner to that show in the appendix, to isolate the poles arising from surface-wave con-
tributions. Basically this will give rise to more Fresnel-type integrals which will account for the uniform transition
across the surface-wave boundaries. The uniform asymptotics for these canonical diffracting wedge geometries can
also be used to deal with acoustic and electromagnetic wave fields inside duct structures where corners occur by
using the “building-block” method; see [12,13].
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Appendix, Derivation of Eq.11

Here we shall derive in detail the result (11) from the expression (10).

D(9+1w eo)elkrcoshwdw

P(r,0) = /
JT\/_ cos 3 0s —2(¢3+1w))

47‘[«/_/ (D.(0, 6y, w) + D, (0, 6y, w))elkrcoshw
2y

(cos ZT — cosh &% 2”’ cos - — isinh 5~ 2w sin 5= ) dw

(cos 27” — cosh ¢ 2“’ cos 21&) + (sinh 20 in 2;//)
Now by using the evenness and oddness of the integrand and noting that sin
1 [ ;
P00 = 5 [ DLt wpel e
3 0

(cos 2; sin 27” — cosh &% 2“’ cos 2;// sin - ) dw

x
(cosh sz — cos 27 w)) (cosh sz — cos —2(”;'/[))
i > .
_3_ D, (©, 6, w)elkr cosh w
bis
(smh ZW gip 2¥ 2w sin - ) dw
X

(cosh sz — cos 27 lﬂ)) (cosh ZT“’ — cos —2(”3+¢))

P( 0) 1 o0 6(9 90 w)eikrcoshw
r,0) =—
6 Jo (cosh 5 —cos % (JT — 1/’)) (cosh 5 —cos % (n + 1))

h2w 2 .
x[— (cos Eu cos 5(7( — Iﬂ)) sin 5(” + )

h2w 2 2 d
—(cos T—cosg(n—iﬂm) 51n§(n—1p)i| w

u_

3 5 we get

i oo ®, 6 w)elkrcoshw
_a/o (cosh sz — cos %(n —9)) (cosh YW _ cos 3(7t + )

ioh 2w h 2w 2( )
X — —_— f—
sin 3 cos 3 cos 3 T+

h2w 2 d
— (cos 3~ cos 5(” — w)):| w.

00 De(e 90’ w)elkrcoshwdw
2(7T+1//))
3

1
P(r,0) = ——sin — (71+1p)/
67 cosh sz — CosS

o0 De(9 90, w)elkrcmhwdw
- sm (n 1/f) . =D
cosh ZF —cos = )
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i [ Dy(0, B, welk" Ohw sinh Z2dy

67 Jo (cosh sz — cos _2(n3—w))
i /00 D, (6, 6y, w)elk" s sinh 22 dy
67 Jo (cosh sz — cos —2(”;”/’))
This is the result (11).
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